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1. Introduction

Texture is an important characteristic for the analysis

of many images. Image texture can be described in terms of

a two-level mechanism, one to describe the basic primitives

composing the texture and the other to describe the spatial

layout of the primitives. The primitives may be of deter-

ministic shape such as squares, circles, hexagons, or may be

of completely random shape. Textures such as ceiling tiles

and bricks can ba grouped under the first category while tex-

tures such as grass and sand fall under the second category.

It may be possible to model patterns such as bricks and tiles

by using the placement rule model [Rosenfeld, Troy, 1970;

Zucker, 1974]. Such a description may be very complex for

random textures such as cork and grass due to the random shapes

and orientations of the primitives.

We take the view that the given texture is generated by

an underlying random field characterized by appropriate para-

metric models. One of the prime characteristics of this

approach is that the models considered for the textures are

generative, i.e., given the structure of the model and reason-

able estimates of the parameters characterizing the model syn-

thetic textures close to the original textures may be obtained.

Several generative stochastic models are known in the litera-

ture for texture analysis. By appending the successive rows,
the resulting image vector has been modeled by seasonalAIR FOR" 1 FFTCE Oq E (AY7FSC R Es E
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autoregressive and moving average models (ARMA) and their

variants [McCormick, Jayaramamurthy, 1974], and by seasonal

autoregressive models [Delp, et al., 19791. Since we are

dealing with two-dimensional textures, intuitively it would

be preferable to represent the textures using 2-D models.

Two-dimensional causal ARMA models have been suggested for

textures in [Tou, 1980]. However, the causal models are

only a restricted set of models.

Recently, a different class of spatial interaction models

known as conditional Markov (CM) models have been used for

modeling textures [Hassner, Sklansky, 1978A; 1978B; 1980;

Cross, 1980]. Hassner and Sklansky [1978A; 1978B] have pointed

out the equivalence between the Gibbs field and 2ar'ov random

field and generated some synthetic binary textures. The

coding method [Besag, 1974] for obtaining the estimates of

the CM models has been briefly mentioned. Cross [1980] has

generated a wide variety of binary and eight-level synthetic

textures using the Monte Carlo simulation procedure [Metro-

polis, Rosenbluth, et al., 1953]. The Monte Carlo procedure

is iterative in nature and involves considerable computational

time for generating synthetic textures with large numbers of

gray levels.

Our main emphasis in this paper is to illustrate the appro-

priateness of SAR models for textures. Although under Gaussian

situations, there exists a correspondence between the classes



of SAR and CM models [Besag, 1974] in that given a SAR model,

an equivalent CM model can be found, this correspondence

is true only in second-order properties. Hence for non-

Gaussian situations, the two models are different. In the

equivalent SAR and CM models, usually the SAR models are

characterized by a lesser number of parameters. The main

attraction of the SAR models considered here is that the

methods can be easily generalized to non-Gaussian situations.

Such a generalization to non-Gaussian situations using CM

models is unattractive due to the computationally expensive

iterative schemes used for synthesis [Cross, 1980].

The organization of this paper is as follows: In Section

2, we give the theoretical variograms of several SAR models.

Many of these variograms exhibit periodic patterns found in

the variograms of natural textures. Section 3 discusses the

role of statistical inference methods in texture modeling

using SAR models. Specifically, we review the role of spe-

cific estimation methods and model selection rules discussed

in (Chellappa, 1980 ; Chellappa, Kashyap, 1981B; Chellappa,

1981]. In Section 4, we give the experimental results of

fitting SAR models to cork, grass, wood, sand and paper taken

from Brodatz's album [Brodatz, 1956]. The quality of fit is

evaluated using visual inspection and empirical variograms

of the reconstructed textures. Finally, a brief discussion is
given in Section 5. t - . - -
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2. Appropriateness of SAR models for texture synthesis

We intend to illustrate the usefulness of SAR models

for textures in two steps, using the synthetic patterns

generated by known SAR models and the theoretical vario-

grams of SAR models. In an earlier report [Chellappa,

1980), several synthetic patterns were generated using

SAR models. Contrary to the existing belief [Modestino,

et al., 1979] that spatial interaction models such as SAR

models are incapable of exhibiting local replication

attrioutes, an essential ingredient of texture: several

of the synthetic patterns generated by the SAR models do

show local replication.

Another way of judging the appropriateness of SAR

models is by using the variogram. Suppose {y(s),sEQ},

Q={s=(i,j), li,j:M} are the observations from t e texture.

Then the variogram at displacement (k,£) is defined as

V(k,£) =E[y(s) - y(s+(k,))] 2 ]1

= 2 R0,0{l-P k,} (2.1)

where pkt is the normalized autocorrelation function. An

expression for the theoretical variogram may Le obtained by

assuming that the given set of observations {y(o)} obeys a

finite lattice SAR model in (2.2)-(2.3) [Kashyap, 1980A;

13aOB; 1981]. Prior to that we partition the finite lattice

Q into two sets aI and 0B' defined below:



aB = {s=(iJ): sEa and (s+r)(E}

and

The representation of {y(s)} is different in nI and QB as

given below:

y(s) = N e y (s+y) + /$W(s),sEQ (2.2)" yEN Y

and

y(s) = y Y(s+y) + / (s),sE B (2.3)yEN Y

where

yl(s+(k,9£)) with s=(i,j)

= y(s+(k,£)) if (s+(k,£Z))EQ

= y[(i+k-l)mod M+1, (j+£.-l)mod 14+1]if

(s (k,ZW))Q.

In (2.2) and (2.3), {w(.)} is an independent and identically

(IlID) distributed noise sequence. The set N is known as the

neigiibor set, and depending upon the specific choice of N,

causal, semicausal and noncausal models are obtained [Jain,

Jain, 1978]. Causal or more generally unilateral neighbor

sets are finite subsets of the half plane S+ defined in

[Goooman, Ekstrom, 1980]. The observation set {y(s)} is not

Markov with respect to N, i.e.,

p(ys) lall y(y), ygs)

p(y(s)jall y(s+y), yEN) (2.4)

as is true for CM models.

L -



Due to the specific finite lattice representation,

the normalized autocorrelation function pk,L at lag(k,k£)

can be written as [Chellappa, Kashyap, 1981A]

Z exp /2 x0[(SI)T(k,£)]/jjlsl 2
Pk, Z_ __ __ _ __E_ _ __ __ _ ___2_ (2.5)

where

(Os = (I-OT*s),SEQ,0 (2.6)

s = Col.[exp(V-T(s-l) Ty),yEN] (2.7)

and

1

The variograms V(k,l) related to pk  as in (2.1) are plotted

in Figure 1 for several SAR models. The details of the models

are given in Table 1. For each model we have plotted vario-

grams along the four directions (0i),(i,0),(i,i),(i,-i) in

a discrete lattice. The structure of the possible variograms

with two-dimensional SAR models is quite varied and many of

them possess oscillatory behavior, a characteristic of tae

variograms of natural textures with periodic patterns [Scnacater,

et al., 1978].

/



3. Statistical inference methods in texture modeling

Before a SAR model can be fitted to the given texture,

two problems have to be tackled: a method for determining

the structure of the "best" SAR model and a metnod of esti-

mating the parameters of the model given the structure

of the model. For SAR models with unilateral neighbor sets

the classical least square (LS) estimates are consistent

and efficient for the Gaussian case but the LS estimates

are not consistent for nonunilateral neighbor sets [Ord,

1975; Kashyap, Chellappa, 1981]. To obtain consistent and

efficient estimates, maximum likelihood (ML) estimates can

be obtained by making appropriate assumptions regarding the

distribution of {w(s)}. Due to the Jacobian of the trans-

formation matrix from {w(.)} to {y(.)} not being unity for

non-unilateral neighbor set SAR models, the log likelihood

function for Gaussian {y(s)} is non-quadratic in the para-

meters. This requires the use of computationally expensive

gradient schemes like Newton-Raphson to obtain ML estimates.

An iterative scheme with reduced computations has been deve-

loped in [Chellappa, 1980; Chellappa, Kashyap, 1981B;

Cnellappa, 1981] which yields approximate ML estimates. The

approximate ML estimates T,8 are obtained as limits of

et+1, 8t given below:

(R - S)I(V _ U),t=0,l,2,3, ... (2.8)t ~ at atq~ ~ '



.7 (y - z(s)) 2, t=0,,2,3... (2.9)M2 a(~ -

where

S = E z(s)zT Cs), mxm matrix (2.10)

U = Z z(s)y(s), mxl vector (2.11)

V = Z Cs, mXl vector (2.12)

R = E(S Ss - ~CsCT), mxm matrix (2.13)

= Col. [cos ) T yyEN]

and
Ty

-s Col. [sin -(s -l) yyEN]

The initial value 60 is chosen as follows:

80 = s-'U

All the summations in (2.8)-(2.13) are over sEQ and

m is the dimension of 8. The use of approximate ML

estimates in texture modeling has been emphasized in [Chellappa,

1980; Chellappa, Kashyap, 1981B] using synthetic patterns.

The quality of the regenerated synthetic textures using

approximate ML estimates is better than the synthetic tex-

tures using inconsistent LS estimates.

Thus far in our discussions we have assumed that the

underlying structure N of the model is known. In practice,

the appropriate N is to be estimated from the given texture

data. Asymptotically consistent, transitive and parsimonious

decision rules to choose the appropriate N for the given



texture have oeen given in [Chellappa, 1980; Kashyap,

Chellappa; 19 1]. The derivation of these decision rules

may be found in [Kashyap, et al., 1981]. The relevance

of these decision rules in texture modeling has been illus-

trated in [Chellappa, 1980; Kashyap, Chellappa, 19811 using

synthetic patterns. Several SAR models were fitted to the

data generated oy a known SAR model and the test statistic

gn given in (2.14) was computed for each model:

2 -_gn = M log~n - Zlog(l-2Csn
sEQ

+ -snn7 + 2MnlogM (2.14)

where

(ZC C T+SST(.52sn = ( -snsn +~n (2.15)

The model corresponding to the minimum of gn is chosen as

the appropriate model. This decision rule correctly eliminates

several inappropriate models. One way of judging the in-

appropriateness of a model is by evaluating the quality of

the synthetic texture generated by the model. The synthetic

textures corresponding to clearly inappropriate models are

not similar to the original. But the synthetic patterns corres-

ponding to SAR models whose neighbor sets include the neighbor

set of the true model are very similar to the original making

visual judgment subjective. Due to its preference for parsi-

monious models, the decision rule minimizing gn correctly

eliminates the over-parameterized models.

A!



4. Real texture synthesis using SAR models

Our discussions so far have been concerned with syn-

thetic image patterns generated by known SAR models. The

next step is to investigate the appropriateness of SAR

and CM models for natural textures like sand, cork, grass,

etc. For our experiments, we chose 5 textures from Brodatz's

album (19561. The 64x64 textures selected were cork, sand,

grass, wood and paper. We report the results of fitting

SAR models to the textures mentioned above as a sequence of

experiments.

In the first experiment, different SAR models were fitted

to cork using the estimation scheme in (2.8)-(2.9). The

details of the fitted models are in Table 2; the estimate

and the test statistic gn in (2.14) are in Table 3. The

patterns corresponding to the fitted models, generated using

a Gaussian pseudo-random number generator, are given in

Figure 2. The synthetic textures (1,2),(1,3), and (2,1)

corresponding to SAR models Ns1,Ns 2 ' and NS3 are not good. In

fact, models NS1 and NS2 give non-stationary patterns. The

quality of the synthetic textures (2,2)-(3,2) is significantly

improved when neighbors farther than the nearest are included,

as in models NS4 through NS7 in Table 2. Since the reduction

in variance is not significant by increasing the number of

parameters from 10 to 14, the decision statistic gn for the

10 parameter model NS4 is less than those for the 12 and 14

parameter models NS6 and Ns7 . However, the 18 parameter model

L_ A



NS7 is preferred to the lower order models. Observe that

the patterns corresponding to the last four models are

very similar.

The synthetic cork textures corresponding to models

N S4 - NS7 display the diagonal pattern present in the ori-

ginal cork. However, the synthetic textures seem to have

more abrupt variations in their intensities than the original

cork, i.e., distinct dark and white patches are present in

the synthetic textures rather than smooth variations as

in the original cork.

Note that the synthetic textures in Figure 2 were gener-

ate" using a Gaussian pseudo-random number generator. Better

4uaiity can be achieved if the noise sequence used to generate

the synthetic textures is derived by using the histogram of

the actual residuals. The actual residuals {W(.)} were pro-

duceQ by using

= [H()y - l] (2.16)

where a,6 and a are the estimates of 8,6, and a, respectively.

We used three standard programs BDCOU1, MDGC and GGVCR from

the LMSL package in that order to generate a set of random

deviates whose histogram approximates the histogram of the

exact residuals. The exact residuals were tallied into twenty

bins using BDCOU1. The normalized frequencies obtained from

BDCOUI were fed as inputs to MDGC. The cumulative distribution

function of the residuals obtained from MDGC was used to



generate the required random deviates. The results of syn-

thetic generation using the histogram matched random numbers

are given in Figure 3. Figure (1,1) is the original cork

texture, and window. (1,2) is the synthetic texture using

the 14 parameter SAR model and Gaussian random number genera-

tor. The synthetic texture using the histogram matched resi-

duals is in window (1,3).

The results of fitting SAR models to the other textures under

consideration are given in Figure 4. The model fitted was

14 parameter SAR model NS6 and histogram matched residuals

were used to generate the synthetic textures. The synthetic

paper texture (1,2) in Figure 4 retains the vertical direc-

tionality present in the original in (1,i). As mentioned be-

fore, some large patches not in the original texture are pre-

sent in the synthetic image. The horizontal streak-like pat-

tern present in the original wood texture (2,1) is reasonably

picked up in the synthetic wood (2,2), with a few additional

patches. The synthetic grass (2,3) corresponding to the

natural grass in (1,3) is not as good as cork or wood. This

is probably due to the fact that grass appears to be more

inhomogenous compared to cork or wood. As in the case of paper

and cork the directionality present in sand (3,1) is picked up

in the synthetic texture (3,2). Another way of judging the

quality of texture synthesis is to see if the second order

properties such as the variogram, etc. of the synthetic texture

I,



are close to the original data. To answer this query, vario-

grams of original textures and synthetic textures are given

siae .iy side in Figure 5. The synthetic textures correspond

to SAA model NS6 and were generated using histogram matched

resiAuals. Note that in all the cases the variograms of syn-

thetic textures are reasonably similar to the original vario-

grams. One that is worthy of pointing out is the variogram

of the synthetic wood along (0,i).

It is probable that a 64x64 data set may be large for

a 14 parameter model. Large images may be blocked into small

images and each block may be modeled separately [Delp, et al.,

1979]. The results of fitting 12 parameter symmetric SAR

models to 32x32 blocks of four textures, cork, sand, paper,

and grass, are given in Figure 6. The synthetic textures were

constructed using histogram matched residuals. Compared to

the 64x64 synthetic cork texture, the 32x32 synthetic cork in

window (2,2) has fewer abrupt intensity variations. The sand

and paper textures also show such results. However, the

32x32 synthetic grass (1,4) is not as good as the 64x64 syn-

thetic grass in Figure 6.



5. Discussion

We have given some experimental results of our attempts

to synthesize a class of real textures. The textures con-

sidered belong to the class of microtextures. There have

been several earlier attempts to synthesize real textures,

notably the work reported by Cross [1980] and Garber and

Sawchuck [19811. Cross considered a wider class of textures

than attempted in our study. In the Monte Carlo procedures

used for synthesis purposes, the size of the state set in-

creases rapidly with the number of gray levels. Hence, to

avoid excessive computations, two and eight level images

obtained by an equal probability quantization procedure

[Haralick, et al., 1973] have been fitted with CM models.

coding estimates have been used to generate synthetic tex-

tures. Good results nave been reported for the textures

considered in our study. It has been concluded that CM

models are poor fits to textures such as brick, water, and

wood. It is not clear if the bad fits are due to inefficient

coding estimates or due to the distinctly inhomogeneous struc-

ture of wood, water and brick due to the reduction in number

of gray levels or due to the inadequacy of the CM models them-

selves. Our limited experiments with SAR models have given

reasonably good results for wood and it appears that much larger

parameter sets are required for water. Due to the extremely

/1



high regularity present in the brick, probably a two-stage

procedure may be appropriate [Cross, 1980, p. 1371. In the

first stage we can model the line patterns for bricks and sub-

sequently fill in the areas using a SAR model.

A number of synthesis techniques have been suggested in

[Garber, Sawchuck, 19811 for binary and gray level textures.

Mostly unilateral models have been considered compared to

the more general SAR models used in our study. Consequently,

LS estimates have been used to generate synthetic images.

No quantitative rules are available in their study for choos-

ing an appropriate model. Good results have been reported

for binary images and some gray level images. Better results

might have been obtained on smaller images since the number

of parameters required would be much smaller leading to better

accuracy in estimation.



Table 1. Details of SAR Models Whose Variograms

are in Figure 1. 8 is assumed to 1.1111.

Model
Identification N Parameter 8

Fig. la (-I,0) 1 (-1,1) 1 (0,i) 1 (111) a-l,0=. 81e Il -. 1806

0 ,1=l.1011, 81,1= -. 0390

Fig. lb (-i,0),(-l,1),(0,l),(ll) 6_1,0=i1,0=.5256

(1,0), (1,-I), (0,-I), (-1,-i)_i=1l_= -. 2480

6 8l =8 O 5081

8 1, =8_ ,_= -.2876

Fig. lc (-I,0) (,i,-,-, i0=1.0388,

(-2,0),(0,-2) 80,_1=.9046

6_1,_1= - 7288

-2,1=  0480,2
-.1048

Fig. id -,) (-iI) 0,i _,=10 = . 28,

(1,0) , (1,-1) , (0,-1) 0,1=0,1 -. 14

8 _ , = 1, _]I= 2 2



Table 1
Cc ont.)

Model
Identification N Parameter 8

Fig. le (-101(0-02'1-1 8 .9704,

6 .9735,

-. 9686



Table 2

Symmetric neighbor sets of SAR
models fitted to cork

Model Symmetric Neighbor Set
Number

N Sl (0 1) (1 0)

NS2 (0,1), (1,0), (1,-i), (-1,-1)

N S3
N 4  (0,1), (1,0), (1,-i), (1,1), (0,2) ,(2,0)

(-2,1), (2,1), (1,2), (-1,2)

N S5 NS4 U {(2,2),(-2,2)}

A S6 N$Ss U {(3,0),(0,3)}

W S7 Ns6 U {(1,3),(3,1l),(-1,3),(-3,1)}



Table 3

Estimate 8and test statistics g for SAR models

fitted tc cork. Variance of Hata =714.04

model I-

N5 1  200.02 Non-stationary

N S2  169.78 Non-stationary

N S3  168.52 23423.0

N S4  157.73 23225.0

N5S5  157.68 23243.0

N S6  157.71 23257.0

N5S7 155.28 23207.0
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Figure 1. The theoretical variograms of the SAR
models in Table 1. V(O,k) versus k
is plotted in the first row, V(k,O)
versus k in the second row , V(k,k)
versus k in the third row and Vlk,-k)
versus k in the fourth row.



:11

(c) (d)
--I -a

l . a a a.*

- da i s i

Figure 1 (cont' d. )

I -



is

a - - .a U *

(e) (f)

Figure 1 (cont'd.)

- -- ... . .. . . -



Ii

Figure 2. Synthesis of cork texture using SAR models.
(1,1) is the original cork, (l,2),(l,3),(2,l)
were generated by models N - NS3 of Table 2.
Patterns (2,2),(2,3),(3,l)-and (3,2) were
generated by NS 4 - Ns 7*
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Figure 3. Results of using histogram matched residuals.
(1,1) is original cork, (1,2) was generated by
N S of Table 2 using Gaussian pseudorandom
numbers and (1,3) was generated by NS6 and
histogram matched residuals.



Figure 4. Results of fitting SAR models to other textures.
All the synthetic textures were generated using
NS6 and histogram matched residuals.

(1,1) and (1,2): oriqinal and syntk-iic paper.
(1,3) and (2,3): original and synthetic grass.
(2,1) and (2,2): original and synthetic wood.
(3,1) and (3,2): original and synthetic sand.
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Figure 6. Results of fitting SAR models to
32x32 blocks of textures. All the synthetic
textures were generated using N and
histogram matched residuals..(l,If and
(1,2): original and synthetic paper.
(1,3) and (1,4): original and synthetic
grass. (2,1) and (2,2): original and
synthetic cork. (2,3) and (2,4): original
and synthetic sand.
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